4.6 Article

The barium isotopic mixture for the metal-poor subgiant star HD140283

期刊

ASTRONOMY & ASTROPHYSICS
卷 523, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201014970

关键词

stars: individual: HD140283; stars: population II; stars: abundances; Galaxy: evolution; nuclear reactions, nucleosynthesis, abundances

资金

  1. Science and Technology Facilities Council [ST/F007280/1] Funding Source: researchfish
  2. STFC [ST/F007280/1] Funding Source: UKRI

向作者/读者索取更多资源

Context. Current theory regarding heavy element nucleosynthesis in metal-poor environments states that the r-process would be dominant. The star HD140283 has been the subject of debate after it appeared in some studies to be dominated by the s-process. Aims. We provide an independent measure of the Ba isotope mixture using an extremely high quality spectrum and an extensive chi(2) analysis. Methods. We have acquired a very high resolution (R equivalent to lambda/Delta lambda = 95 000), very high signal-to-noise (S/N = 1110 around 4554 angstrom, as calculated in IRAF) spectrum of HD140283. We exploit hyperfine splitting of the Ba II 4554 angstrom and 4934 angstrom resonance lines in an effort to constrain the isotope ratio in 1D LTE. Using the code ATLAS in conjunction with KURUCZ06 model atmospheres we analyse 93 Fe lines to determine the star's macroturbulence. With this information we construct a grid of Ba synthetic spectra and, using a chi(2) code, fit these to our observed data to determine the isotopic ratio, f(odd), which represents the ratio of odd to even isotopes. The odd isotopes and Ba-138 are synthesized by the r- and s-process while the other even isotopes (Ba-134,Ba-136) are synthesized purely by the s-process. We also analyse the Eu lines. Results. We set a new upper limit of the rotation of HD140283 at v sin i <= 3.9 km s(-1), a new upper limit on [Eu/H] < -2.80 and abundances [Fe/H] = -2.59 +/- 0.09, [Ba/H] = -3.46 +/- 0.11. This leads to a new lower limit on [Ba/Eu] > -0.66. We find that, in the framework of a 1D LTE analysis, the isotopic ratios of Ba in HD140283 indicate f(odd) = 0.02 +/- 0.06, a purely s-process signature. This implies that observations and analysis do not validate currently accepted theory. Conclusions. We speculate that a 1D code, due to simplifying assumptions, is not adequate when dealing with observations with high levels of resolution and signal-to-noise because of the turbulent motions associated with a 3D stellar atmosphere. New approaches to analysing isotopic ratios, in particular 3D hydrodynamics, need to be considered when dealing with the levels of detail required to properly determine them. However published 3D results exacerbate the disagreement between theory and observation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据