4.7 Article

Modulation of microphthalmia-associated transcription factor gene expression alters skin pigmentation

期刊

JOURNAL OF INVESTIGATIVE DERMATOLOGY
卷 119, 期 6, 页码 1330-1340

出版社

ELSEVIER SCIENCE INC
DOI: 10.1046/j.1523-1747.2002.19615.x

关键词

lipoic acid; microphthalmia; pigmentation; traditional Chinese medicine; tyrosinase; ultraviolet

向作者/读者索取更多资源

The microphthalmia-associated transcription factor is implicated in melanocyte development and in the regulation of melanogenesis. Microphthalmia-associated transcription factor is thought to bind to the M-box promoter elements of tyrosinase, tyrosinase-related protein-1 and dopachrome tautomerase/tyrosinase-related protein-2 and transactivate these genes, resulting in increased pigmentation. Using a luciferase reporter construct driven by the microphthalmia-associated transcription factor promoter, we identified agents that modulate microphthalmia-associated transcription factor promoter activity. Changes in endogenous microphthalmia-associated transcription factor expression levels upon treatment with these agents were confirmed using northern and western blots, and their pigmentary modulating activities were demonstrated. Ultraviolet B irradiation and traditional Chinese medicine-1, a natural extract used in traditional Chinese medicine, upregulated microphthalmia-associated transcription factor gene expression and enhanced tyrosinase activity in vitro . Dihydrolipoic acid, lipoic acid, and resveratrol reduced microphthalmia-associated transcription factor and tyrosinase promoter activities. These agents also inhibited the forskolin- and ultraviolet B-stimulated promoter activities of these genes and significantly reduced tyrosinase activity in melanocyte cultures, resulting in depigmentation. Overexpressed microphthalmia-associated transcription factor was capable of rescuing the repressive effects of these compounds on the cotransfected tyrosinase promoter. Dark-skinned Yucatan swine treated with these agents showed visible skin lightening, which was confirmed histologically, whereas ultraviolet B-induced tanning of light-skinned swine was inhibited using these agents. Our findings suggest that modulation of microphthalmia-associated transcription factor expression can alter skin pigmentation and further confirm the central role of microphthalmia-associated transcription factor in melanogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据