4.6 Article

The central region of spiral galaxies as seen by Herschel

期刊

ASTRONOMY & ASTROPHYSICS
卷 518, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201014588

关键词

infrared: galaxies; submillimeter: galaxies; galaxies: spiral; galaxies: nuclei; galaxies: fundamental parameters

资金

  1. CSA (Canada)
  2. NAOC (China)
  3. CEA (France)
  4. CNES (France)
  5. CNRS (France)
  6. ASI (Italy)
  7. MCINN (Spain)
  8. Stockholm Observatory (Sweden)
  9. STFC (UK)
  10. NASA (USA)
  11. BMVIT (Austria)
  12. ESA-PRODEX (Belgium)
  13. DLR (Germany)
  14. CICT (Spain)
  15. MCT (Spain)
  16. NASA
  17. Science and Technology Facilities Council [PP/E001173/1, ST/G002827/1, ST/F00267X/1, ST/G002630/1, PP/E001181/1, ST/F002858/1] Funding Source: researchfish
  18. UK Space Agency [ST/G003874/1] Funding Source: researchfish
  19. STFC [ST/G002827/1, PP/E001173/1, ST/G002630/1, ST/F00267X/1, ST/F002858/1, ST/H001530/1] Funding Source: UKRI

向作者/读者索取更多资源

With appropriate spatial resolution, images of spiral galaxies in thermal infrared (similar to 10 mu m and beyond) often reveal a bright central component, distinct from the stellar bulge, superimposed on a disk with prominent spiral arms. ISO and Spitzer studies have shown that much of the scatter in the mid-infrared colors of spiral galaxies is related to changes in the relative importance of these two components, rather than to other modifications, such as the morphological type or star formation rate, that affect the properties of the galaxy as a whole. With the Herschel imaging capability from 70 to 500 mu m, we revisit this two-component approach at longer wavelengths, to see if it still provides a working description of the brightness distribution of galaxies, and to determine its implications on the interpretation of global far-infrared properties of galaxies. We quantify the luminosity of the central component by both a decomposition of the radial surface brightness profile and a direct extraction in 2D. We find the central component contribution is variable within the three galaxies in our sample, possibly connected more directly to the presence of a bar than to the morphological type. The central component's relative contribution is at its maximum in the mid-infrared range and drops around 160 mu m to reach a constant value beyond 200 mu m. The central component contains a greater fraction of hot dust than the disk component, and while the colors of the central components are scattered, colors of the disk components are more homogenous from one galaxy to the next.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据