4.7 Article

The NADPH:quinone oxidoreductase P1-ζ-crystallin in Arabidopsis catalyzes the α,β-hydrogenation of 2-alkenals:: Detoxication of the lipid peroxide-derived reactive aldehydes

期刊

PLANT AND CELL PHYSIOLOGY
卷 43, 期 12, 页码 1445-1455

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcf187

关键词

2-alkenal; Arabidopsis thaliana; antioxidant; 4-hydroxy-(2E)-hexenal; 4-hydroxy-(2E)-nonenal; oxidative stress

向作者/读者索取更多资源

P1-zeta-crystallin (P1-ZCr) is an oxidative stress-induced NADPH:quinone oxidoreductase in Arabidopsis thaliana, but its physiological electron acceptors have not been identified. We found that recombinant P1-ZCr catalyzed the reduction of 2-alkenals of carbon chain C-3-C-9 with NADPH. Among these 2-alkenals, the highest specificity was observed for 4-hydroxy-(2E)-nonenal (HNE), one of the major toxic products generated from lipid peroxides. (3Z)-Hexenal and aldehydes without alpha,beta-unsaturated bonds did not serve as electron acceptors. In the 2-alkenal molecules, P1-ZCr catalyzed the hydrogenation of alpha,beta-unsaturated bonds, but not the reduction of the aldehyde moiety, to produce saturated aldehydes, as determined by gas chromatography/mass spectrometry. We propose the enzyme name NADPH:2-alkenal alpha,beta-hydrogenase (ALH). A major portion of the NADPH-dependent HNE-reducing activity in A. thaliana leaves was inhibited by the specific antiserum against P1-ZCr, indicating that the endogenous P1-ZCr protein has ALH activity. Because expression of the P1-ZCr gene in A. thaliana is induced by oxidative stress treatments, we conclude that P1-ZCr functions as a defense against oxidative stress by scavenging the highly toxic, lipid peroxide-derived alpha,beta-unsaturated aldehydes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据