4.6 Review

Extrasolar planet population synthesis I. Method, formation tracks, and mass-distance distribution

期刊

ASTRONOMY & ASTROPHYSICS
卷 501, 期 3, 页码 1139-1160

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/200810301

关键词

stars: planetary systems; stars: planetary systems: formation; stars: planetary systems: protoplanetary disks; planets and satellites: formation; solar system: formation; methods: numerical

资金

  1. Swiss National Science Foundation
  2. Conseil General de Franche-Comte

向作者/读者索取更多资源

Context. With the high number of extrasolar planets discovered by now, it has become possible to use the properties of this planetary population to constrain theoretical formation models in a statistical sense. This paper is the first in a series in which we carry out a large number of planet population synthesis calculations within the framework of the core accretion scenario. We begin the series with a paper mainly dedicated to the presentation of our approach, but also the discussion of a representative synthetic planetary population of solar like stars. In the second paper we statistically compare the subset of detectable planets to the actual extrasolar planets. In subsequent papers, we shall extend the range of stellar masses and the properties of protoplanetary disks. Aims. The last decade has seen a large observational progress in characterizing both protoplanetary disks, and extrasolar planets. Concurrently, progress was made in developing complex theoretical formation models. The combination of these three developments allows a new kind of study: the synthesis of a population of planets from a model, which is compared with the actual population. Our aim is to obtain a general overview of the population, to check if we quantitatively reproduce the most important observed properties and correlations, and to make predictions about the planets that are not yet observable. Methods. Based as tightly as possible on observational data, we have derived probability distributions for the most important initial conditions for the planetary formation process. We then draw sets of initial conditions from these distributions and obtain the corresponding synthetic planets with our formation model. By repeating this step many times, we synthesize the populations. Results. Although the main purpose of this paper is the description of our methods, we present some key results: we find that the variation of the initial conditions in the limits occurring in nature leads to the formation of planets of wide diversity. This formation process is best visualized in planetary formation tracks in the mass-semimajor axis diagram, where different phases of concurrent growth and migration can be identified. These phases lead to the emergence of sub-populations of planets distinguishable in a mass-semimajor axis diagram. The most important ones are the failed cores, a vast group of core-dominated low mass planets, the horizontal branch, a sub-population of Neptune mass planets extending out to 6 AU, and the main clump, a concentration of giant gaseous planets at around 0.3-2 AU.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据