4.6 Review

Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants

期刊

ASTRONOMY & ASTROPHYSICS
卷 506, 期 3, 页码 1277-U468

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/200912678

关键词

stars: AGB and post-AGB; stars: mass loss; Magellanic Clouds

资金

  1. US Department of Energy
  2. National Nuclear Security Administration by the University of California
  3. Lawrence Livermore National Laboratory [W-7405-Eng-48]
  4. National Science Foundation through the Center for Particle Astrophysics of the University of California [AST-8809616]
  5. Mount Stromlo and Siding Spring Observatory, part of the Australian National University

向作者/读者索取更多资源

Context. Mass loss is one of the fundamental properties of Asymptotic Giant Branch (AGB) stars, and through the enrichment of the interstellar medium, AGB stars are key players in the life cycle of dust and gas in the universe. However, a quantitative understanding of the mass-loss process is still largely lacking, particularly its dependence on metallicity. Aims. To investigate the relation between mass loss, luminosity and pulsation period for a large sample of evolved stars in the Small and Large Magellanic Cloud. Methods. Dust radiative transfer models are presented for 101 carbon stars and 86 oxygen-rich evolved stars in the Magellanic Clouds for which 5-35 mu m Spitzer IRS spectra are available. The spectra are complemented with available optical and infrared photometry to construct the spectral energy distribution. A minimisation procedure is used to fit luminosity, mass-loss rate and dust temperature at the inner radius. Different effective temperatures and dust content are also considered. Periods from the literature and from new OGLE-III data are compiled and derived. Results. We derive (dust) mass-loss rates and luminosities for the entire sample. Based on luminosities, periods and amplitudes and colours, the O-rich stars are classified as foreground objects, AGB stars and Red Super Giants. For the O-rich stars silicates based on laboratory optical constants are compared to astronomical silicates. Overall, the grain type by Volk & Kwok (1988, ApJ, 331, 435) fits the data best. However, the fit based on laboratory optical constants for the grains can be improved by abandoning the small-particle limit. The influence of grain size, core-mantle grains and porosity are explored. A computationally convenient method that seems to describe the observed properties in the 10 mu m window are a distribution of hollow spheres with a large vacuum fraction (typically 70%), and grain size of about 1 mu m. Relations between mass-loss rates and luminosity and pulsation period are presented and compared to the predictions of evolutionary models, those by Vassiliadis & Wood (1993, ApJ, 413, 641) and their adopted mass-loss recipe, and those based on a Reimers mass-loss law with a scaling of a factor of five. The Vassiliadis & Wood models describe the data better, although there are also some deficiencies, in particular to the maximum adopted mass-loss rate. The derived mass-loss rates are compared to predictions by dynamical wind models and appear consistent with them at a level of a factor 2-4. A better understanding requires the determination of the expansion velocity from future observations from ALMA. The OGLE-III data reveal an O-rich star in the SMC with a period of 1749 days. Its absolute magnitude of M-bol = -8.0 makes it a good candidate for a super-AGB star.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据