4.6 Article

Jet-lag in Sagittarius A*: what size and timing measurements tell us about the central black hole in the Milky Way

期刊

ASTRONOMY & ASTROPHYSICS
卷 496, 期 1, 页码 77-83

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/20078984

关键词

black hole physics; galaxies: active; galaxies: jets; galaxies: nuclei; Galaxy: center; radio continuum: general

向作者/读者索取更多资源

Context. The black hole at the Galactic Center, Sgr A*, is the prototype of a galactic nucleus at a very low level of activity. Its radio through submm-wave emission is known to come from a region close to the event horizon, however, the source of the emission is still under debate. A successful theory explaining the emission is based on a relativistic jet model scaled down from powerful quasars. Aims. We want to test the predictive power of this established jet model against newly available measurements of wavelength-dependent time lags and the size-wavelength structure in Sgr A*. Methods Using all available closure amplitude VLBI data from different groups, we again derived the intrinsic wavelength-dependent size of Sgr A*. This allowed us to calculate the expected frequency-dependent time lags of radio flares, assuming a range of in-and outflow velocities. Moreover, we calculated the time lags expected in the previously published pressure-driven jet model. The predicted lags are then compared to radio monitoring observations at 22, 43, and 350 GHz. Results. The combination of time lags and size measurements imply a mildly relativistic outflow with bulk outflow speeds of gamma beta similar or equal to 0.5-2. The newly measured time lags are reproduced well by the jet model without any major fine tuning. Conclusions. The results further strengthen the case for the cm-to-mm wave radio emission in Sgr A* as coming from a mildly relativistic jet-like outflow. The combination of radio time lag and VLBI closure amplitude measurements is a powerful new tool for assessing the flow speed and direction in Sgr A*. Future VLBI and time lag measurements over a range of wavelengths will reveal more information about Sgr A*, such as the existence of a jet nozzle, and measure the detailed velocity structure of a relativistic jet near its launching point for the first time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据