4.6 Article

PROSAC: a submillimeter array survey of low-mass protostars II. The mass evolution of envelopes, disks, and stars from the Class 0 through I stages

期刊

ASTRONOMY & ASTROPHYSICS
卷 507, 期 2, 页码 861-U334

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/200912325

关键词

stars: formation; stars: circumstellar matter; stars: planetary systems: protoplanetary disks; radiative transfer

资金

  1. Canadian Space Agency
  2. Netherlands Organization for Scientific Research (NWO)
  3. NOVA
  4. NASA [NNX09AB89G]
  5. NASA [120872, NNX09AB89G] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Context. The key question about early protostellar evolution is how matter is accreted from the large-scale molecular cloud, through the circumstellar disk onto the central star. Aims. We constrain the masses of the envelopes, disks, and central stars of a sample of low-mass protostars and compare the results to theoretical models for the evolution of young stellar objects through the early protostellar stages. Methods. A sample of 20 Class 0 and I protostars has been observed in continuum at (sub)millimeter wavelengths at high angular resolution (typically 2 '') with the submillimeter array. Using detailed dust radiative transfer models of the interferometric data, as well as single-dish continuum observations, we have developed a framework for disentangling the continuum emission from the envelopes and disks, and from that estimated their masses. For the Class I sources in the sample HCO+ 3-2 line emission was furthermore observed with the submillimeter array. Four of these sources show signs of Keplerian rotation, making it possible to determine the masses of the central stars. In the other sources the disks are masked by optically thick envelope and outflow emission. Results. Both Class 0 and I protostars are surrounded by disks with typical masses of about 0.05 M-circle dot, although significant scatter is seen in the derived disk masses for objects within both evolutionary stages. No evidence is found for a correlation between the disk mass and evolutionary stage of the young stellar objects. This contrasts the envelope mass, which decreases sharply from similar to 1 M-circle dot in the Class 0 stage to less than or similar to 0.1 M-circle dot in the Class I stage. Typically, the disks have masses that are 1-10% of the corresponding envelope masses in the Class 0 stage and 20-60% in the Class I stage. For the Class I sources for which Keplerian rotation is seen, the central stars contain 70-98% of the total mass in the star-disk-envelope system, confirming that these objects are late in their evolution through the embedded protostellar stages, with most of the material from the ambient envelope accreted onto the central star. Theoretical models tend to overestimate the disk masses relative to the stellar masses in the late Class I stage. Conclusions. The results argue in favor of a picture in which circumstellar disks are formed early during the protostellar evolution (although these disks are not necessarily rotationally supported) and rapidly process material accreted from the larger scale envelope onto the central star.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据