4.6 Article

High-energy emission from jet-clump interactions in microquasars

期刊

ASTRONOMY & ASTROPHYSICS
卷 503, 期 3, 页码 673-681

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/200811519

关键词

gamma rays: theory; X-rays: binaries; radiation mechanisms: non-thermal

资金

  1. DGI of MEC [AYA2007-68034-C03-01]
  2. European Regional Development Fund (ERDF/FEDER)
  3. Alexander von Humboldt Foundation

向作者/读者索取更多资源

Context. High-mass microquasars are binary systems consisting of a massive star and an accreting compact object from which relativistic jets are launched. There is considerable observational evidence that winds of massive stars are clumpy. Individual clumps may interact with the jets in high-mass microquasars to produce outbursts of high-energy emission. Gamma-ray flares have been detected in some high-mass X-ray binaries, such as Cygnus X-1, and probably in LS 5039 and LS I+61 303. Aims. We predict the high-energy emission produced by the interaction between a jet and a clump of the stellar wind in a high-mass microquasar. Methods. Assuming a hydrodynamic scenario for the jet-clump interaction, we calculate the spectral energy distributions produced by the dominant non-thermal processes: relativistic bremsstrahlung, synchrotron and inverse Compton radiation, for leptons, and for hadrons, proton-proton collisions. Results. Significant levels of emission in X-rays (synchrotron), high-energy gamma rays (inverse Compton), and very high-energy gamma rays (from the decay of neutral pions) are predicted, with luminosities in the different domains in the range similar to 10(32)-10(35) erg s(-1). The spectral energy distributions vary strongly depending on the specific conditions. Conclusions. Jet-clump interactions may be detectable at high and very high energies, and provide an explanation for the fast TeV variability found in some high-mass X-ray binary systems. Our model can help to infer information about the properties of jets and clumpy winds by means of high-sensitivity gamma-ray astronomy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据