4.6 Article

Globular cluster system erosion in elliptical galaxies

期刊

ASTRONOMY & ASTROPHYSICS
卷 507, 期 1, 页码 183-193

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/200912255

关键词

galaxies: general; galaxies: elliptical and lenticular, cD; galaxies: evolution; galaxies: star clusters; galaxies: nuclei

向作者/读者索取更多资源

Context. We analyse data of 8 elliptical galaxies to study the difference between the radial distributions of their globular cluster systems (GCSs) and their galactic stellar component. In all galaxies studied, the GCS density profile is significantly flatter towards the galactic centre than that of the stars. Aims. A flatter profile of the radial distribution of the GCS with respect to that of the galactic stellar component is a difference with astrophysical relevance. A quantitative comparative analysis of the profiles may provide insight into both galaxy and globular cluster formation and evolution. If the difference is caused by erosion of the GCS, the missing GCs in the galactic central region may have merged around the galactic centre and formed, or at least increased in mass, the galactic nucleus. Observational support to this are the correlations between the galaxy integrated absolute magnitude and the number of globular clusters lost and that between the central massive black hole mass and the total mass of globular clusters lost. Methods. We fitted both the stellar and globular cluster system radial profiles of a set of galaxies observed at high resolution. We found that the GCS profile is less sharply peaked at the galactic centre than the stellar one. Assuming that this difference is caused by GCS evolution, starting from a radial distribution initially indistinguishable from that of stars, we can evaluate by a simple normalization procedure the number (and mass) of GCs that have disappeared. Results. The number of missing globular clusters is significant, ranging from 21% to 71% of their initial population abundance in the eight galaxies examined. The corresponding mass lost to the central galactic region is (for every galaxy of the sample) in the 2.77 x 10(7)-1.58 x 10(9) M-circle dot interval. All the transported mass towards the central galactic regions have had probably an important effect on the innermost galactic zone, including its violent transient activity (AGN) and local massive black hole formation and growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据