4.6 Article

Role of carbon in GaN

期刊

JOURNAL OF APPLIED PHYSICS
卷 92, 期 11, 页码 6553-6560

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1518794

关键词

-

向作者/读者索取更多资源

GaN samples, containing various concentrations of carbon and doped intentionally with silicon, have been grown heteroepitaxially on sapphire using metal-organic chemical-vapor deposition. These samples have been characterized by a variety of electrical and optical techniques, and the resulting experimental data are compared to density-functional-theory calculations of the formation energies and electronic states of substitutional and interstitial carbon in hexagonal GaN. We find that in samples where the silicon concentration exceeds that of carbon, carbon sits in the N substitutional site, acting as an acceptor and partially compensating the material. However, when carbon densities exceed those for Si, GaN becomes semi-insulating due to carbon occupation of both N and Ga substitutional lattice sites, and a new luminescence peak appears at similar to3 eV. Calculated formation energies of carbon in both sites are strong functions of both the Fermi level and growth stoichiometry. The former dependence gives rise to self-compensation when [C]>[Si] because the formation energy of the Ga substitutional configuration (the donor state) becomes equal to that of the N substitutional site, effectively pinning the Fermi level as it approaches midgap. Our results suggest that effective p-type doping of GaN can only be achieved under Ga-rich growth conditions. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据