4.8 Article

A gain-of-function mutation in an Arabidopsis Toll Interleukin-1 Receptor-Nucleotide Binding Site-Leucine-Rich Repeat type R gene triggers defense responses and results in enhanced disease resistance

期刊

PLANT CELL
卷 14, 期 12, 页码 3149-3162

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.005348

关键词

-

向作者/读者索取更多资源

In a screen for suppressors of npr1-5-based salicylic acid (SA) insensitivity, we isolated a semidominant gain-of-function mutation, designated ssi4, that confers constitutive expression of several PR (pathogenesis-related) genes, induces SA accumulation, triggers programmed cell death, and enhances resistance to bacterial and oomycete pathogens. Through map-based cloning, ssi4 was identified and found to encode a putative protein belonging to the TIR-NBS-LRR (Toll Interleukin1 Receptor-Nucleotide Binding Site-Leu-Rich Repeat) class of R (resistance) proteins. Comparison between ssi4 and the corresponding wild-type sequence revealed a single amino acid substitution in the NBS. Epistasis analysis indicated that SA and EDS1 are required for ssi4-induced PR-1 expression and enhanced disease resistance; they also are required for the increased accumulation of SSI4 and EDS1 transcripts detected in the ssi4 mutant. Although high levels of ssi4 transcripts correlate with the appearance of the mutant phenotype, overexpression of the wild-type SSI4 gene failed to induce stunting, spontaneous lesion formation, or increased PR-1 expression associated with the ssi4 mutation. Thus, the ssi4 phenotype does not appear to be caused by overexpression of this R gene; rather, we propose that the NBS substitution generates a constitutively activated R protein. Furthermore, because SA treatment induced the expression of SSI4 and the closely related TIR-NBS-LRR genes RPP1 and RPS4 but had little effect on the expression of the coiled-coil NBS-LRR genes RPM1 and RPS2, we suggest that SA not only functions as a critical signal for downstream resistance events but also upregulates the expression of certain R genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据