4.6 Article

Dust amorphization in protoplanetary disks

期刊

ASTRONOMY & ASTROPHYSICS
卷 508, 期 1, 页码 247-U309

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/200912087

关键词

circumstellar matter; stars: pre-main sequence; stars: formation; planetary systems: protoplanetary disks; X-rays: stars

资金

  1. ESA
  2. USA (NASA)
  3. Swiss NSF [PP002-110504]

向作者/读者索取更多资源

Aims. High-energy irradiation of circumstellar material might impact the structure and the composition of a protoplanetary disk and hence the process of planet formation. In this paper, we present a study of the possible influence of stellar irradiation, indicated by X-ray emission, on the crystalline structure of circumstellar dust. Methods. The dust crystallinity is measured for 42 class II T Tauri stars in the Taurus star-forming region using a decomposition fit of the 10 mu m silicate feature, measured with the spitzer IRS instrument. Since the sample includes objects with disks of various evolutionary stages, we further confine the target selection, using the age of the objects as a selection parameter. Results. We correlate the X-ray luminosity and the X-ray hardness of the central object with the crystalline mass fraction of the circumstellar dust and find a significant anti-correlation for 20 objects within an age range of approx. 1 to 4.5 Myr. We postulate that X-rays represent the stellar activity and consequently the energetic ions of the stellar winds which interact with the circumstellar disk. We show that the fluxes around 1 AU and ion energies of the present solar wind are sufficient to amorphize the upper layer of dust grains very efficiently, leading to an observable reduction of the crystalline mass fraction of the circumstellar, sub-micron sized dust. This effect could also erase other relations between crystallinity and disk/star parameters such as age or spectral type.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据