4.6 Article

Physical parameters of T dwarfs derived from high-resolution near-infrared spectra

期刊

ASTRONOMY & ASTROPHYSICS
卷 501, 期 3, 页码 1059-1071

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/200810752

关键词

stars: fundamental parameters; stars: atmosphers; stars: low-mass, brown dwarfs

资金

  1. Spanish Ministry of Science via [AYA2007-67458]
  2. Jet Propulsion Laboratory
  3. DFG via Graduiertenkolleg [1351]
  4. State of Hamburg
  5. National Energy Research Supercomputer Center (NERSC),
  6. Office of Science of the US Department of Energy [DE-AC03-76SF00098]

向作者/读者索取更多资源

Aims. We determine the effective temperature, surface gravity and projected rotational velocity of nine T dwarfs from the comparison of high-resolution near-infrared spectra and synthetic models, and estimate the mass and age of the objects from state-of-the-art models. Methods. We use the AMES-COND cloudless solar metallicity models provided by the PHOENIX code to match the spectra of nine T-type field dwarfs observed with the near-infrared high-resolution spectrograph NIRSPEC using ten echelle orders to cover part of the J band from 1.147 to 1.347 mu m with a resolving power R similar to 20 000. The projected rotational velocity, effective temperature and surface gravity of the objects are determined based on the minimum root mean square of the differences between the modelled and observed relative fluxes. Estimates of the mass and age of the objects are obtained from effective temperature-surface gravity diagrams, where our results are compared with existing solar metallicity models. Results. The modelled spectra reproduce quite well the observed features for most of the T dwarfs, with effective temperatures in the range of 922-1009 K, and surface gravities between 10(4.1) and 10(4.9) cm s(-2). Our results support the assumption of a dust free atmosphere for T dwarfs later than T5, where dust grains form and then gravitationally sediment into the low atmosphere. The modelled spectra do not accurately mimic some individual very strong lines like the Ki doublet at 1.2436 and 1.2525 mu m. Our modelled spectra does not match well the observed spectra of the two T dwarfs with earlier spectral types, namely SDSSp J125453.90-012247.4 (T2) and 2MASS J05591914-1404488 (T4.5), which is likely due to the presence of condensate clouds that are not incorporated in the models used here. By comparing our results and their uncertainties to evolutionary models, we estimate masses in the interval approximate to 5-75 M-J for T dwarfs later than T5, which are in good agreement with those found in the literature. We found apparent young ages that are typically between 0.1 and a few Gyr for the same T dwarfs, which is consistent with recent kinematical studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据