4.8 Article

Flux maximizing geometric flows

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2002.1114849

关键词

geometric active contours; gradient flows; shape analysis; divergence and flux; blood vessel segmentation

向作者/读者索取更多资源

Several geometric active contour models have been proposed for segmentation in computer vision and image analysis. The essential idea is to evolve a curve (in 2D) or a surface (in 3D) under constraints from image forces so that it clings to features of interest in an intensity image. Recent variations on this theme take into account properties of enclosed regions and allow for multiple curves or surfaces to be simultaneously represented. However, it is still unclear how to apply these techniques to images of narrow elongated structures, such as blood vessels, where intensity contrast may be low and reliable region statistics cannot be computed. To address this problem, we derive the gradient flows which maximize the rate of increase of flux of an appropriate vector field through a curve (in 2D) or a surface (in 3D). The key idea is to exploit the direction of the vector field along with its magnitude. The calculations lead to a simple and elegant interpretation which is essentially parameter free and has the same form in both dimensions. We illustrate its advantages with several level-set-based segmentations of 2D and 3D angiography images of blood vessels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据