4.6 Article

Stellar models with the ML2 theory of convection

期刊

ASTRONOMY & ASTROPHYSICS
卷 487, 期 3, 页码 1075-1080

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:200810253

关键词

convection; globular clusters : general; stars : interiors; stars : evolution; Sun : general; turbulence

资金

  1. STFC [PP/E001149/1] Funding Source: UKRI
  2. Science and Technology Facilities Council [PP/E001149/1] Funding Source: researchfish

向作者/读者索取更多资源

Context. The mixing length theory (MLT) used to compute the temperature gradient in superadiabatic layers of stellar (interior and atmosphere) models contains in its standard form 4 free parameters. Three parameters are fixed a priori (and define what we denote as the MLT flavour) whereas one (the so-called mixing length) is calibrated by reproducing observational constraints. The classical Bohm-Vitense flavour is used in all modern MLT-based stellar model computations and, despite its crude approximations, the resulting T-eff scale appears-perhaps surprisingly-remarkably realistic, once the mixing length parameter is calibrated with a solar model. Aims. Model atmosphere computations employ parameter choices different from what is used in stellar interior modelling, raising the question of whether a single MLT flavour and mixing length value can be used to compute interiors and atmospheres of stars of all types. As a first step towards addressing this issue, we study whether the MLT flavour (the so-called ML2) and mixing length choice that have been proven adequate to model white dwarf atmospheres, are able to provide, when used in stellar models, results at least comparable to the use of the classical Bohm-Vitense flavour. Methods. We have computed solar models and evolutionary tracks for both low-and intermediate-mass Population I and II stars, adopting both solar calibrated Bohm-Vitense and ML2 flavours of the MLT in our stellar evolution code, and state-of-the-art input physics. Results. The two sets of models provide consistent results, with only minor differences. Both calibrations reproduce also the T-eff of red giants in a sample of Galactic globular clusters. The ML2 solar model provides a mixing length about half the value of the local pressure scale height, thus alleviating-but not eliminating-one of the well known inconsistencies of the MLT employed in stellar models. This mixing length is also consistent with the value used in white dwarf model atmosphere computations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据