4.6 Article

PCA detection and denoising of Zeeman signatures in polarised stellar spectra

期刊

ASTRONOMY & ASTROPHYSICS
卷 486, 期 2, 页码 637-646

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:200809719

关键词

polarization; stars : magnetic fields; methods : numerical

向作者/读者索取更多资源

Aims. Our main objective is to develop a denoising strategy to increase the signal to noise ratio of individual spectral lines of stellar spectropolarimetric observations. Methods. We use a multivariate statistics technique called Principal Component Analysis. The cross-product matrix of the observations is diagonalized to obtain the eigenvectors in which the original observations can be developed. This basis is such that the first eigenvectors contain the greatest variance. Assuming that the noise is uncorrelated a denoising is possible by reconstructing the data with a truncated basis. We propose a method to identify the number of eigenvectors for an effcient noise filtering. Results. Numerical simulations are used to demonstrate that an important increase of the signal to noise ratio per spectral line is possible using PCA denoising techniques. It can be also applied for detection of magnetic fields in stellar atmospheres. We analyze the relation between PCA and commonly used techniques like line addition and least-squares deconvolution. Moreover, PCA is very robust and easy to compute.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据