4.7 Article

GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms

期刊

GENOMICS
卷 80, 期 6, 页码 553-557

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/geno.2002.7010

关键词

alternative splicing; duplication; glucose transport; GLUT; testis

资金

  1. NIGMS NIH HHS [R01GM-55695, R24GM61894] Funding Source: Medline

向作者/读者索取更多资源

We have identified and cloned GLUT14, a novel member of the glucose transporter family. GLUT14 (SLC2A14) maps to chromosome 12p13.3 (17.1M), about 10 Mb upstream of GLUT3, with which it shares remarkable identity. Until now GLUT14 was thought to be a pseudogene. It consists of 11 exons with a genomic organization similar to that of GLUT3 and likely resulted from a duplication of GLUT3. GLUT14 has two alternatively spliced forms; the shorter form of GLUT14 (GLUT14-S) consists of 10 exons and produces a 497-amino-acid protein that is 94.5% identical to GLUT3. The long form (GLUT14-L) has an additional exon and codes for a protein with 520 amino acids that differs from GLUT14-S only at the N-terminus. GLUT14-S/L contain 12 putative membrane-spanning helices along with sugar-transporter signature motifs that have previously been shown to be essential for sugar transport activity. The putative glycosylation sites of GLUT14-S/L are present in loop 1. In contrast to the expression of GLUT3 in many tissues, both isoforms of GLUT14 are specifically expressed in testis. The mRNA level of GLUT14 in testis is about four times higher than that of GLUT3. Interestingly, the ortholog of GLUT14 is not found in mice. The multiple duplications of GLUT genes suggest that the GLUT family probably emerged by gene duplications and mutations during evolution in different lineages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据