4.5 Article

Prediction of grout penetration in fractured rocks by numerical simulation

期刊

CANADIAN GEOTECHNICAL JOURNAL
卷 39, 期 6, 页码 1384-1394

出版社

NATL RESEARCH COUNCIL CANADA
DOI: 10.1139/T02-063

关键词

stochastic fractures; fractured rock mass; grout flow; grout penetration

向作者/读者索取更多资源

As fractures in rock significantly reduce the strength as well as the stiffness of the rock mass, grouting may be required to improve the performance of the rock mass in engineering or mining projects. During grouting, mortar of cement or other materials is injected into the rock mass so that the fractures can be filled up and the rock mass can act as an integral unit. Unlike water, grouts are usually viscous and behave as non-Newtonian fluids. Therefore, the equations describing the flow of grout are more complicated and the solutions are quite difficult to obtain. The problem is further aggravated by the fact that the fractures are mostly randomly distributed, and it is rarely possible to accurately define the fractures and the distribution patterns. In this paper, a numerical model is proposed for analyzing the grouting process. The model is based on the stochastic approach, and it can provide the depth of penetration and the fluid pressure due to the flow of grout, which is modeled as a Bingham fluid, in the fractured rock mass. Parametric studies have been carried out to investigate the effects of various factors on the depth of penetration, and a regression formula is developed for calculating the penetration depth. Experiments have been carried out and their results are used to validate the present method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据