4.7 Article

Generic features of modulational instability in nonlocal Kerr media

期刊

PHYSICAL REVIEW E
卷 66, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.66.066615

关键词

-

向作者/读者索取更多资源

The modulational instability (MI) of plane waves in nonlocal Kerr media is studied for a general response function. Several generic properties are proven mathematically, with emphasis on how new gain bands are formed through a bifurcation process when the degree of nonlocality, sigma, passes certain bifurcation values and how the bandwidth and maximum of each individual gain band depends on sigma. The generic properties of the MI gain spectrum, including the bifurcation phenomena, are then demonstrated for the exponential and rectangular response functions. For a focusing nonlinearity the nonlocality tends to suppress MI, but can never remove it completely, irrespectively of the shape of the response function. For a defocusing nonlinearity the stability properties depend sensitively on the profile of the response function. For response functions with a positive-definite spectrum, such as Gaussians and exponentials, plane waves are always stable, whereas response functions with spectra that are not positive definite (such as the rectangular) will lead to MI if sigma exceeds a certain threshold. For the square response function, in both the focusing and defocusing case, we show analytically and numerically how new gain bands that form at higher wave numbers when sigma increases will eventually dominate the existing gain bands at lower wave numbers and abruptly change the length scale of the periodic pattern that may be observed in experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据