4.6 Article

Increased carbon tetrachloride-induced liver injury and fibrosis in FGFR4-deficient mice

期刊

AMERICAN JOURNAL OF PATHOLOGY
卷 161, 期 6, 页码 2003-2010

出版社

AMER SOC INVESTIGATIVE PATHOLOGY, INC
DOI: 10.1016/S0002-9440(10)64478-1

关键词

-

资金

  1. Intramural NIH HHS [Z01 DK047039] Funding Source: Medline
  2. NIDDK NIH HHS [DK 47039, DK 35310, R01 DK035310] Funding Source: Medline

向作者/读者索取更多资源

Carbon tetrachloride (CCl4) intoxification in rodents is a commonly used model of both acute and chronic liver injury. Recently, we showed that mice in which FGFR4 was ablated from the germline exhibited elevated cholesterol metabolism and bile acid synthesis coincident with unrepressed levels of cytochrome P450 7A (CYP7A), the rate-limiting enzyme in cholesterol disposal. of the four fibroblast growth factor (FGF) receptor genes expressed in adult liver, FGFR4 is expressed specifically in mature hepatocytes. To determine whether FGFR4 plays a broader role in liver-specific metabolic functions, we examined the impact of both acute and chronic exposure to CCl4 in FGFR4-deficient mice. Following acute CCl4 exposure, the FGFR4-deficient mice exhibited accelerated liver injury, a significant increase in liver mass and delayed hepatolobular repair. Chronic CCl4 exposure resulted in severe fibrosis in livers of FGFR4-deficient mice compared to normal mice. Analysis at both mRNA and protein levels indicated an 8-hour delay in FGFR4-deficient mice in the down-regulation of cytochrome P450 2E1 (CYP2E1) protein, the major enzyme whose products underlie CCl4-induced injury. These results show that hepatocyte FGFR4 protects against acute and chronic insult to the liver and prevents accompanying fibrosis. The results show that FGFR4 acts by promotion of processes that restore hepatolobular architecture rather than cellularity while limiting damage due to prolonged CYP2E1 activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据