4.4 Article

Selection for thermodynamically stable DNA tetraloops using temperature gradient gel electrophoresis reveals four motifs: d(cGNNAg), d(cGNABg), d(cCNNGg), and d(gCNNGc)

期刊

BIOCHEMISTRY
卷 41, 期 48, 页码 14281-14292

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi026479k

关键词

-

向作者/读者索取更多资源

Hairpins play important roles in the function of DNA. forming cruciforms and affecting processes such as replication and recombination. Temperature gradient gel electrophoresis (TGGE) and in vitro selection have been used to isolate thermodynamically stable DNA hairpins from a six-nucleotide random library. The TGGE-selection process was optimized such that known stable DNA tetraloops were recovered, and the selection appears to be exhaustive. In the selection, four families of exceptionally stable DNA loops were identified: d(cGNNAg), d(cGNABg), d(cCNNGg), and d(gCNNGc). (Lowercase denotes the closing base pair, N = A, C, G. or T. and B = C. G, or T.) It appears that the known stable d(cGNA) triloop motif can be embedded into a tetraloop,, with the extra nucleotide inserted into either the middle of the loop, d(cGNNAg), or at the 3'-end of the loop, d(cGNABg). For d(cGNNAg) and d(cGNABg), a CG closing base pair was strongly preferred over a GC, with DeltaDeltaGdegrees(37) approximate to 2 kcal/mol. Members of the two families, d(cCNNGg) and d(gCNNGc), are similar in stability. The loop sequences and closing base pairs identified for exceptionally stable DNA tetraloops show many similarities to those known for exceptionally stable RNA tetraloops. These data provide an expanded set of thermodynamic rules for the formation of tetraloops in DNA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据