4.8 Review

BCR/ABL regulates response to DNA damage: the role in resistance to genotoxic treatment and in genomic instability

期刊

ONCOGENE
卷 21, 期 56, 页码 8591-8604

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1206087

关键词

DNA damage; DNA repair; apoptosis; checkpoint

向作者/读者索取更多资源

BCR/ABL regulates cell proliferation, apoptosis, differentiation and adhesion. In addition, BCR/ABL can induce resistance to cytostatic drugs and irradiation by modulation of DNA repair mechanisms, cell cycle checkpoints and Bcl-2 protein family members. Upon DNA damage BCR/ABL not only enhances reparation of DNA lesions (e.g. homologous recombination repair), but also prolongs activation of cell cycle checkpoints (e.g. G2/M) providing more time for repair of otherwise lethal lesions. Moreover, by modification of antiapoptotic members of the Bcl-2 family (e.g. upregulation of BCL-x(L) BCR/ABL provides a cytoplasmic 'umbrella' protecting mitochondria from the 'rain' of apoptotic signals coming from the damaged DNA in the nucleus, thus preventing release of cytochrome c and activation of caspases. The unrepaired and/or aberrantly repaired (but not lethal) DNA lesions resulting from spontaneous and/or drug-induced damage can accumulate in BCR/ABL transformed cells leading to genomic instability and malignant progression of the disease. Inhibition of BCR/ABL kinase activity by STI571 (Gleevec, imatinib mesylate) reverses drug resistance and, in combination with standard chemotherapeutics can exert strong antileukemia effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据