4.8 Article

Combining computational and experimental screening for rapid optimization of protein properties

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.212627499

关键词

computational protein design; protein engineering; mutagenesis; directed evolution; beta-lactamase

向作者/读者索取更多资源

We present a combined computational and experimental method for the rapid optimization of proteins. Using beta-lactamase as a test case, we redesigned the active site region using our Protein Design Automation technology as a computational screen to search the entire sequence space. Byeliminating sequences incompatible with the protein fold, Protein Design Automation rapidly reduced the number of sequences to a size amenable to experimental screening, resulting in a library of approximate to200,000 mutants. These were then constructed and experimentally screened to select for variants with improved resistance to the antibiotic cefotaxime. In a single round, we obtained variants exhibiting a 1,280-fold increase in resistance. To our knowledge, all of the mutations were novel, i.e., they have not been identified as beneficial by random mutagenesis or DNA shuffling or seen in any of the naturally occurring TEM beta-lactamases, the most prevalent type of Gram-negative beta-lactamases. This combined approach allows for the rapid improvement of any property that can be screened experimentally and provides a powerful broadly applicable tool for protein engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据