4.8 Article

Microfluidic actuation using electrochemically generated bubbles

期刊

ANALYTICAL CHEMISTRY
卷 74, 期 24, 页码 6392-6396

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac0259818

关键词

-

向作者/读者索取更多资源

Bubble-based actuation in microfluidic applications is attractive owing to elementary microfabrication requirements. In the present study, the mechanical and chemical characteristics of electrochemically generated bubble valves were studied. By generating electrochemical bubbles as valves directly inside the channel, valves could be closed and opened in milliseconds. Whereas bubble inflation (or valve closing) rate increases with applied voltage, small microfluidic dimensions accelerate bubble deflation rates. It is found that bubbles need not collapse fully to restore full flow, and the channel opens when its hydraulic resistance equals that between the bubble and the wall-a process requiring only milliseconds. Since only picomoles of salt are needed to generate bubbles, pH gradients that are invariably associated with electrochemical reactions were readily suppressed by using a small amount of buffer, as visualized by a pH-sensitive fluorescent dye. A range of common laboratory reagents and electrolytes in varying concentrations, including weak to strong acids and bases, as well as nonaqueous/aqueous mixtures were successfully tested. Using such bubble valves, an eight-way multiplexer was fabricated and tested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据