4.6 Article

Hydrogen adsorption on sp2-bonded carbon:: Influence of the local curvature -: art. no. 245416

期刊

PHYSICAL REVIEW B
卷 66, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.66.245416

关键词

-

向作者/读者索取更多资源

The interaction of atomic hydrogen and low-energy hydrogen ions with sp(2)-bonded carbon is investigated on the surfaces of C-60 multilayer films, single-walled carbon nanotubes, and graphite (0001). These three materials have been chosen to represent sp(2)-bonded carbon networks with different local curvatures and closed surfaces (i.e. no dangling bonds). Chemisorption of hydrogen on these surfaces reduces emission from photoemission features associated with the pi electrons and leads to a lowering of the work function up to 1.3 eV. It is found that the energy barrier for hydrogen adsorption decreases with increasing local curvature of the carbon surface. Whereas in the case of C-60 and single-walled carbon nanotubes, hydrogen adsorption can be achieved by exposure to atomic hydrogen, the hydrogen adsorption on graphite (0001) requires H+ ions of low kinetic energy (similar to1 eV). On all three materials, the adsorption energy barrier is found to increase with coverage. Accordingly, hydrogen chemisorption saturates at coverages that depend on the local curvature of the sample and the form of hydrogen (i.e., atomic or ionic) used for the treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据