4.8 Article

An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode membrane

期刊

ANALYTICAL CHEMISTRY
卷 74, 期 24, 页码 6323-6333

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac0203241

关键词

-

向作者/读者索取更多资源

A surface plasmon resonance (SPR) sodium ion sensor using an ion optode membrane film was experimentally and theoretically described based on an absorption-based SPR principle proposed in our previous article (Kurihara, K.; Suzuki, K. Anal. Chem. 2002, 74, 696-701). The sodium ion concentrations from 10(-6) to 10(-1) have been successfully determined not only by the resonance angle diagnosis of the SPR curve but also by the minimum reflectance one. The ion optode film was plasticized poly(vinyl chloride) including a neutral sodium ionophore, a pH-sensitive cationic dye, and an anionic additive. Its optical absorption intensity changed with the sodium ion concentrations. The SPR ion sensor physically measured the complex refractive index caused by the absorption in the ion optode film. We have exhaustively investigated the experimental response behavior of the SPR curve relative to the sodium ion concentrations by comparison with numerically simulated SPR curves using a three-layer Fresnel equation including experimental values for the sodium ion optode membrane film. As predicted by the absorption-based SPR principle, the SPR curve behavior of the SPR ion sensors depended on two factors: one was the relation between the excitation frequency of the light source and the absorption maximum frequency in the ion optode film while the other was the gold metallic thickness in the Kretchmann configuration. The concept and practical theory of an absorption-based SPR sensor not only have been proved by the experimental results of the SPR sodium ion sensor but also have successfully allowed flexible ion sensing in an SPR sensor, which would be very difficult without the absorption mechanism in the ion optode film.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据