4.4 Article

Structure-based thermodynamic analysis of a coupled metal binding-protein folding reaction involving a zinc finger peptide

期刊

BIOCHEMISTRY
卷 41, 期 50, 页码 15068-15073

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi026621h

关键词

-

向作者/读者索取更多资源

The thermodynamics of metal binding by the prototypical Cys(2)His(2) zinc finger peptide CP-1 has been examined through the use of isothermal titration calorimetry. In cholamine buffer at pH 7.0, the binding of zinc(II) to CP-1 shows an enthalpy change of DeltaHdegrees(obs) = -33.7 +/- 0.8 kcal/mol. Between one and two protons appear to be released accompanying the metal binding process. The heat of protonation of the cholamine buffer used is quite large (-11.5 kcal/mol), indicating that a portion of the observed metal binding enthalpy is due to buffer protonation. Structure-based thermodynamic analysis including the effect of water release from zinc(II) appears to account for the entropy associated with the coupled metal binding-protein folding process serniquantitatively. The strongest driving force for the reaction is the enthalpy associated with the four bonds from zinc(II) to cysteinate and histidine residues, compared with the bonds from zinc(II) to water. The binding of cobalt(II) to CP-1 is less enthalpically driven than the binding of zinc(II) by -7.6 kcal/mol. This value is approximately equal to, but slightly larger than, the expectation based on considerations of ligand field stabilization energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据