4.0 Article

Stellar archaeology: Exploring the Universe with metal-poor stars Ludwig Biermann Award Lecture 2009

期刊

ASTRONOMISCHE NACHRICHTEN
卷 331, 期 5, 页码 474-488

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/asna.201011362

关键词

early Universe; Galaxy: halo; Galaxy: stellar content; stars: abundances; stars: Population II

资金

  1. Astronomische Gesellschaft
  2. Clay Postdoctoral Fellowship

向作者/读者索取更多资源

The abundance patterns of the most metal-poor stars in the Galactic halo and small dwarf galaxies provide us with a wealth of information about the early Universe. In particular, these old survivors allow us to study the nature of the first stars and supernovae, the relevant nucleosynthesis processes responsible for the formation and evolution of the elements, early star- and galaxy formation processes, as well as the assembly process of the stellar halo from dwarf galaxies a long time ago. This review presents the current state of the field of stellar archaeology - the diverse use of metal-poor stars to explore the high-redshift Universe and its constituents. In particular, the conditions for early star formation are discussed, how these ultimately led to a chemical evolution, and what the role of the most iron-poor stars is for learning about Population III supernovae yields. Rapid neutron-capture signatures found in metal-poor stars can be used to obtain stellar ages, but also to constrain this complex nucleosynthesis process with observational measurements. Moreover, chemical abundances of extremely metal-poor stars in different types of dwarf galaxies can be used to infer details on the formation scenario of the halo and the role of dwarf galaxies as Galactic building blocks. I conclude with an outlook as to where this field may be heading within the next decade. A table of similar to 1000 metal-poor stars and their abundances as collected from the literature is provided in electronic format. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据