4.6 Article

Degradation of cellulose substrates by cellulosome chimeras -: Substrate targeting versus proximity of enzyme components

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 51, 页码 49621-49630

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M207672200

关键词

-

向作者/读者索取更多资源

A library of 75 different chimeric cellulosomes was constructed as an extension of our previously described approach for the production of model functional complexes (Fierobe, H.-P., Mechaly, A., Tardif, C., Belaich, A., Lamed, R., Shoham, Y., Belaich, J.-P., and Bayer, E. A (2001) J. BioL Chem. 276,21257-21261), based on the high affinity species-specific cohesin-dockerin interaction. Each complex contained three protein components: (i) a chimeric scaffoldin possessing an optional cellulose-binding module and two cohesins of divergent specificity, and (ii) two cellulases, each bearing a dockerin complementary to one of the divergent cohesins. The activities of the resultant ternary complexes were assayed using different types of cellulose substrates. Organization of cellulolytic enzymes into cellulosome chimeras resulted in characteristically high activities on recalcitrant substrates, whereas the cellulosome chimeras showed little or no advantage over free enzyme systems on tractable substrates. On recalcitrant cellulose, the presence of a cellulose-binding domain on the scaffoldin and enzyme proximity on the resultant complex contributed almost equally to their elevated action on the substrate. For certain enzyme pairs, however, one effect appeared to predominate over the other. The results also indicate that substrate recalcitrance is not necessarily a function of its crystallinity but reflects the overall accessibility of reactive sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据