4.8 Article

Three mutations in sterol-sensing domain of SCAP block interaction with insig and render SREBP cleavage insensitive to sterols

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.262669399

关键词

-

资金

  1. NHLBI NIH HHS [P01 HL020948, HL-20948] Funding Source: Medline

向作者/读者索取更多资源

We report the isolation and characterization of a new line of mutant Chinese hamster ovary cells, designated SRD-5, that are resistant to 25HC, a potent suppressor of cleavage of sterol regulatory element-binding proteins (SREBPs) in mammalian cells. In SRD-5 cells, SREBPs are cleaved constitutively, generating transcriptionally active nuclear SREBP even in the presence of sterols. Sequence analysis of SREBP cleavage-activating protein (SCAP) transcripts from SRD-5 cells revealed the presence of a mutation in one SCAP allele that results in substitution of a conserved Leu by Phe at amino acid 315 within the sterol-sensing domain. Sterols fail to inhibit the packaging of SREBP/SCAP(L315F) complexes into budding vesicles in vitro. Sterols also fail to induce binding of SCAP(L315F) to insig-1 or insig-2, two proteins that function in the sterol-mediated retention of SREBP/SCAP complexes in the endoplasmic reticulum. Similar findings were observed for SCAP(D443N) and SCAP(Y298C), both of which cause a sterol-resistant phenotype. Thus, three different point mutations, each within the sterol-sensing domain of SCAP, prevent sterol-induced binding of SCAP to insig proteins and abolish feedback regulation of SREBP processing by sterols.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据