4.8 Article

Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 124, 期 51, 页码 15198-15207

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja027759q

关键词

-

向作者/读者索取更多资源

Polymeric nanogel vectors were developed for cellular gene and antisense delivery. Inverse microemulsion polymerization was utilized to synthesize biocompatible nanogels with controlled size, morphology, and composition. The chemical composition, size, polydispersity, stability, and Swelling behavior of the nanogels were investigated by NMR, light scattering, transmission electron microscopy, and atomic force microscopy. The cell viability, uptake, and physical stability of nanogel-DNA complexes were evaluated under physiological conditions. Monodisperse nonlonic and cationic nanogels were produced with controllable sizes ranging from 40 to 200 nm in diameter. The nanogels demonstrated extended stability in aqueous media and exhibited low toxicity in cell culture. Cationic nanogels formed monodisperse complexes with oligonucleotides and showed enhanced oligonucleotide uptake in cell culture. The nanogels synthesized in this study demonstrate potential utility as carriers of oligonucleotides and DNA for antisense and gene delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据