4.6 Article

Glycogen synthase kinase 3β phosphorylates tau at both primed and unprimed sites -: Differential impact on microtubule binding

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 1, 页码 187-193

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M206236200

关键词

-

资金

  1. NINDS NIH HHS [NS35060] Funding Source: Medline

向作者/读者索取更多资源

Glycogen synthase kinase 3beta (GSK3beta) phosphorylates substrates, including the microtubule-associated protein tau, at both primed and unprimed epitopes. GSK3beta phosphorylation of tau negatively regulates tau-microtubule interactions; however the differential effects of phosphorylation at primed and unprimed epitopes on tau is unknown. To examine the phosphorylation of tau at primed and unprimed epitopes and how this impacts tau function, the R96A mutant of GSK3beta was used, a mutation that prevents phosphorylation of substrates at primed sites. Both GSK3beta and GSK3beta-R96A phosphorylated tau efficiently in situ. However, expression of GSK3beta-R96A resulted in significantly less phosphorylation of tau at primed sites compared with GSK3beta. Conversely, GSK3beta-R96A phosphorylated unprimed tau sites to a significantly greater extent than GSK3beta. Pre-phosphorylating tau with cdk5/p25 impaired the ability of GSK3beta-1196A to phosphorylate tau, whereas GSK3beta-R96A phosphorylated recombinant tau to a significantly greater extent than GSK3beta. Moreover, the amount of tau associated with microtubules was reduced by overexpression of GSK3beta but only when tau was phosphorylated at primed sites, as phosphorylation of tau by GSK3beta-R96A did not negatively regulate the association of tau with microtubules. These results demonstrate that GSK3beta-mediated phosphorylation of tau at primed sites plays a more significant role in regulating the interaction of tau with microtubules than phosphorylation at unprimed epitopes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据