4.7 Article

Microstructural evolution during accumulative roll-bonding of commercial purity aluminum

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S0921-5093(02)00182-X

关键词

accumulative roll-bonding; cold rolling; microstructure; misorientation; spacing; aluminum

向作者/读者索取更多资源

The microstructure in commercial purity aluminum deformed from medium to high strain (epsilon(vM) = 1.6-6.4) by accumulative roll-bonding (ARB) at 473 K was quantitatively examined by transmission electron microscopy. It was found that a sub-micrometer lamellar structure characterizes the microstructure at high strains (epsilon(vM) > 1.6), and that the lamellar boundary spacing decreases and the misorientation across the lamellar boundaries increases with increasing rolling strain. This characteristic evolution has also been observed during conventional cold-rolling of commercial purity aluminum. However, a comparison between the two processes shows a significant difference in the evolution of the microstructural parameters. These differences are discussed based on the different processing conditions characterizing ARB and conventional rolling, respectively. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据