4.5 Article

Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabetes

期刊

PHYSIOLOGICAL GENOMICS
卷 12, 期 2, 页码 139-146

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiolgenomics.00125.2002

关键词

hyperglycemia; protein kinase C; gene and protein expression; real-time reverse transcription polymerase chain reaction

资金

  1. NHLBI NIH HHS [HL-61507, HL-70752] Funding Source: Medline

向作者/读者索取更多资源

The protein kinase C (PKC) pathway has recently been recognized as an important mechanism in the development of diabetic complications including cardiomyopathy and angiopathy. Although an increase in PKC kinase activity has been detected in the cardiovascular system of diabetic patients and animals, it is unclear whether the same pathological condition alters PKC at the transcriptional and translational levels. In this study we assessed quantitatively the mRNA and protein expression profiles of PKC isozymes in the heart and vascular tissues from streptozotocin- induced diabetic pigs. Partial regions of the porcine PKCalpha, beta1, and beta2 mRNAs were sequenced, and real-time RT-PCR assays were developed for PKC mRNA quantification. The results showed a significant increase in the mRNA levels of PKCalpha, beta1, and beta2 in the heart at 4-8 wk of diabetes. In concomitance, the PKCbeta1 and beta2 genes, but not the PKCalpha gene, were upregulated in the diabetic aorta. Correspondingly, there was a significant increase in the protein expression of PKCalpha and beta2 in the heart and PKCbeta2 in the aorta with a time course correlated to that of mRNA expression. In summary, PKCbeta2 was significantly upregulated in the heart and aorta at both the transcriptional and translational levels during early stages of experimental diabetes, suggesting that PKCbeta2 may be a prominent target of diabetic injury in the cardiovascular system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据