4.6 Article

Evolution of normal stress and surface roughness in buckled thin films

期刊

JOURNAL OF APPLIED PHYSICS
卷 93, 期 2, 页码 893-897

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1528299

关键词

-

向作者/读者索取更多资源

In this work we investigate buckling of compressed elastic thin films, which are bonded onto a viscous layer of finite thickness. It is found that the normal stress exerted by the viscous layer on the elastic film evolves with time showing a minimum at early buckling stages, while it increases at later stages. The normal stress also shows a minimum as a function of applied compressive stress, which depends strongly on the viscosity of the underlying layer and strain values. Furthermore, with decreasing viscosity the film roughness amplitude also shows a minimum at early buckling stages. The effect of the viscosity becomes more pronounced with increasing strain in the film. Finally, decreasing elastic film thickness and/or increasing viscous layer thickness also enhance buckling roughness. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据