4.7 Article

Functional characterization of the adenosine receptor contributing to glycogenolysis and gluconeogenesis in rat hepatocytes

期刊

EUROPEAN JOURNAL OF PHARMACOLOGY
卷 459, 期 2-3, 页码 159-166

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0014-2999(02)02832-7

关键词

adenosine; A(2B) receptor; glycogenolysis; gluconeogenesis; hepatocyte; rate; cAMP

向作者/读者索取更多资源

The adenosine receptor subtype mediating glucose production by glycogenolysis and gluconeogenesis was studied in primary cultured rat hepatocytes. Adenosine and adenosine agonists caused cyclic AMP accumulation in rat hepatocytes. The order of potency was 5'-N-ethylcarboxamidoadenosine (NECA)>R(-)-N-6-(2-phenylisopropyl)adenosine (RPIA)>adenosine>2-[p-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680). Furthermore, adenosine agonists stimulated glycogenolysis and gluconeogenesis. The order of potency was NECA>RPIA>CGS21680. The rank order of potency is typical for adenosine A(2B) receptors. Glycogenolysis stimulated by NECA was fully inhibited by nonselective adenosine antagonists, 9-chloro-2-(2-furanyl)[1,2,4]triazolo[1,5-c]quinazolin-5-amine (CGS15943). However, the adenosine A(2A) receptor-selective antagonist, 8-(3-chlorostyryl)caffeine (CSC), and the adenosine A] receptor-selective antagonist, (+)-(R)- [(E) - 3 -(2 -phenylpyrazolo[ 1.5-alpha] pyridin-3-yl)acryloyl]-2-piperidine ethanol (FK453), had a low inhibitory potency. A strong correlation was found between the inhibitory effect of adenosine antagonists on NECA-induced glucose production and that on intracellular cyclic AMP generation in rat hepatocytes. Our results suggest that adenosine stimulates cyclic AMP formation and regulates glycogenolysis and gluconeogenesis, most likely through the adenosine A(2B) receptor subtype in rat hepatocytes. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据