4.7 Article

Dynamical habitability of known extrasolar planetary systems

期刊

ASTROPHYSICAL JOURNAL
卷 583, 期 1, 页码 473-488

出版社

IOP PUBLISHING LTD
DOI: 10.1086/345359

关键词

astrobiology; celestial mechanics; methods : n-body simulations; planetary systems; stellar dynamics

向作者/读者索取更多资源

Habitability is usually defined as the requirement for a terrestrial planet's atmosphere to sustain liquid water. This definition can be complemented by the dynamical requirement that other planets in the system do not gravitationally perturb terrestrial planets outside of their habitable zone, the orbital region allowing the existence of liquid water. We quantify the dynamical habitability of 85 known extrasolar planetary systems via simulations of their orbital dynamics in the presence of potentially habitable terrestrial planets. When requiring that habitable planets remain strictly within their habitable zone at all times, the perturbing influence of giant planets extends beyond the traditional Hill sphere for close encounters: terrestrial planet excursions outside of the habitable zone are also caused by secular eccentricity variations and, in some cases, strong mean-motion resonances. Our results indicate that more than half the known extrasolar planetary systems ( mostly those with distant, eccentric giant planets) are unlikely to harbor habitable terrestrial planets. About one-fourth of the systems ( mostly those with close-in giant planets), including one-third of the potential targets for the Terrestrial Planet Finder, appear as dynamically habitable as our own solar system. The influence of yet undetected giant planets in these systems could compromise their dynamical habitability. Some habitable terrestrial planets in our simulations have substantial eccentricities (e > 0.1), which may lead to large seasonal climate variations and thus affect their habitability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据