4.6 Article

Influence of polar ozone loss on northern midlatitude regions estimated by a high-resolution chemistry transport model during winter 1999/2000 -: art. no. 8326

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2001JD000906

关键词

polar filament; midlatitude; ozone loss; irreversible transport; chemical ozone loss

向作者/读者索取更多资源

[1] The Modele Isentropique de transport Mesoechelle de l'Ozone Stratospherique par Advection avec CHIMie (MIMOSA-CHIM) three-dimensional high-resolution chemical transport model has been developed to estimate the contribution of polar ozone destruction to the lower stratosphere ozone budget at midlatitudes. The ability of the model to reproduce the evolution of polar and midlatitude ozone during the 1999/2000 winter is first evaluated by comparisons against lidar and sonde measurements. The modeled potential vorticity (PV) fields are also compared with PV fields derived from ECMWF analyses and the chemical fields of the model are compared with the output of a large-scale chemical transport model in order to highlight the interest of a high-resolution model for resolving fine-scale structures such as polar filaments. A PV-based analysis is performed to estimate the area covered by polar air, vortex, and filaments in the 45degreesN 55degreesN latitude band at 475K and their contribution to ozone loss. The polar air contribution was found to represent usually between 20% and 40% of the total ozone loss in this latitude band but can reach 50% during large vortex intrusions. At 475K, the total chemical ozone loss in nonpolar air between 45degreesN and 55degreesN increases from 1% in mid-December to 15% at the end of March. Several chemical ozone tracers are considered to investigate the origin of the ozone loss in nonpolar air. These tracers allow us to quantify the amount of chemical ozone destruction that occurred in the vortex, in the polar filamentary structures, and in the nonpolar air. Until February, the main contributor to the nonpolar ozone loss is in situ destruction at midlatitudes, but the contribution from the ozone destruction in the polar vortex increases steadily during the winter and represents about 50% of the total midlatitude ozone loss in April, after the vortex breakup. The contribution from the ozone destruction within filamentary structures is found to be quasi-negligible as a result of the limited number of filaments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据