4.7 Article

Interparticle potential and the phase behavior of temperature-sensitive microgel dispersions

期刊

MACROMOLECULES
卷 36, 期 2, 页码 440-448

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma025656m

关键词

-

向作者/读者索取更多资源

Molecular-thermodynamic models assisted with experimental measurements are applied to correlate and predict the volume transition and structural ordering of poly(N-isopropylacrylamide) (PNIPAM) microgel particles dispersed in pure water. The effective pair potential between PNIPAM particles is represented by a Sutherland-like potential where the size and energy parameters are correlated with particle radius and the solution osmotic second virial coefficients attained from static and dynamic light scattering experiments. Using a first-order perturbation theory for the fluid phase and an extended cell model for the crystalline solid, the calculated phase diagram indicates that an aqueous dispersion of PNIPAM particles may freeze at both high and low temperatures. At low temperature, the freezing occurs at large particle volume fraction, similar to that in a hard-sphere system, while at high temperature, the freezing is driven by strong van der Waals attraction due to the increase in the Hamaker constant of the microgel particles when they collapse. The phase diagram of PNIPAM dispersions predicted from the molecular-thermodynamic models agrees favorably with experimental observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据