4.7 Article

Structural damage detection based on a micro-genetic algorithm using incomplete and noisy modal test data

期刊

JOURNAL OF SOUND AND VIBRATION
卷 259, 期 5, 页码 1081-1094

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1006/jsvi.2002.5116

关键词

-

向作者/读者索取更多资源

This paper describes a procedure for detecting structural damage based on a microgenetic algorithm using incomplete and noisy modal test data. As the number of sensors used to measure modal data is normally small when compared with the degrees of freedom of the finite element model of the structure, the incomplete mode shape data are first expanded to match with all degrees of freedom of the finite element model under consideration. The elemental energy quotient difference is then employed to locate the damage domain approximately. Finally, a micro-genetic algorithm is used to quantify the damage extent by minimizing the errors between the measured data and numerical results. The process may be either of single-level or implemented through two-level search strategies. The study has covered the use of frequencies only and the combined use of both frequencies and mode shapes. The proposed method is applied to a single-span simply supported beam and a three-span continuous beam with multiple damage locations. In the study, the modal test data are simulated numerically using the finite element method. The measurement errors of modal data are simulated by superimposing random noise with appropriate magnitudes. The effectiveness of using frequencies and both frequencies and mode shapes as the data for quantification of damage extent are examined. The effects of incomplete and noisy modal test data on the accuracy of damage detection are also discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据