4.6 Review

Galaxy pairs in the Sloan Digital Sky Survey. I. Star formation, active galactic nucleus fraction, and the luminosity/mass-metallicity relation

期刊

ASTRONOMICAL JOURNAL
卷 135, 期 5, 页码 1877-1899

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-6256/135/5/1877

关键词

galaxies : abundances; galaxies : ISM

向作者/读者索取更多资源

We present a sample of 1716 galaxies with companions within Delta upsilon < 500 km s(-1), r(p) < 80 h(70)(-1) and stellar mass ratio 0.1 < M-1/M-2 < 10 from the Sloan Digital Sky Survey Data Release 4. The galaxy pairs are selected from the Main Galaxy Sample using stringent and well-understood criteria for redshift, spectral quality, available stellar masses, and metallicities. In agreement with previous studies, we find an enhancement in the star-formation rate (SFR) of galaxy pairs at projected separations < 30-40 h(70)(-1) kpc. In addition, we find that this enhancement is highest (and extends to the greatest separations) for galaxies of approximately equal mass, the so-called major pairs. However, SFR enhancement can still be detected for a sample of galaxy pairs whose masses are within a factor of 10 of each other. Based on these results, we define a sample of close pairs (Delta upsilon < 500 km s(-1), r(p) < 30 h(70)(-1) kpc, and 0.1 < M-1/M-2 < 10) which we use to investigate interaction-induced effects in the luminosity-metallicity (LZ) relation. In agreement with the one previous study of the LZ relation in paired galaxies, we find an offset to lower metallicities (by similar to 0.1 dex) for a given luminosity for galaxies in pairs compared to the control sample. We also present the first mass-metallicity (MZ) relation comparison between paired galaxies and the field and again find an offset to lower metallicities (by similar to 0.05 dex) for a given mass. The smaller offset in the MZ relation indicates that both higher luminosities and lower metallicities may contribute to the shift of pairs relative to the control in the LZ relation. We show that the offset in the LZ relation depends on galaxy half-light radius, rh. Galaxies with r(h) less than or similar to 3 h(70)(-1) kpc and with a close companion show a 0.05-0.1 dex downward offset in metallicity compared to control galaxies of the same size. Larger galaxies do not show this offset and have LZ and MZ relations consistent with the control sample. We investigate the physical impetus behind this empirical dependence on rh and consider the galaxy's dynamical time and bulge fractions as possible causes. We conclude that the former is unlikely to be a fundamental driver of the offset in the LZ relation for paired galaxies, but that bulge fraction may play a role. Finally, we study the active galactic nucleus (AGN) fraction in both the pair and control sample and find that whilst selecting galaxies in different cuts of color and asymmetry yields different AGN fractions, the fraction for pairs and the control sample are consistent for a given set of selection criteria. This indicates that if AGNs are ignited as a result of interactions, this activity begins later than the close pairs stage (i.e. once the merger is complete).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据