4.7 Article

Comparison of hybrid receptor models to locate PCB sources in Chicago

期刊

ATMOSPHERIC ENVIRONMENT
卷 37, 期 4, 页码 545-562

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1352-2310(02)00886-5

关键词

hybrid receptor models; PCBS; source identification; wind trajectory; North America; United States; Chicago

向作者/读者索取更多资源

Results of three hybrid receptor models, potential source contribution function (PSCF), concentration weighted trajectory (CWT), and residence time weighted concentration (RTWC), were compared for locating polychlorinated biphenyl (PCB) sources contributing to the atmospheric concentrations in Chicago. Variations of these models, including PSCF using mean and 75% criterion concentrations, joint probability PSCF (JP-PSCF), changes of point filters and grid cell sizes for RTWC, and, PSCF using wind trajectories started at different altitudes, are also discussed. Modeling results were relatively consistent between models. However, no single model provided as complete information as was obtained by using all of them. CWT and 75% PSCF appears to be able to distinguish between larger sources and moderate ones. RTWC resolved high potential source areas. RTWC and JP-PSCF pooling data from all sampling sites removed the trailing effect often seen in PSCF modeling. PSCF results using average concentration criteria, appears to identify both moderate and major sources. Each model has advantages and disadvantages. However, used in combination, they provide information that is not available if only one of them is used. For short-range atmospheric transport, PSCF results were consistent when using wind trajectories starting at different heights. Based on the archived PCB data, the modeling results indicate there is a large potential source area between Joliet and Kankakee, IL, and two moderate sources to the northwest and south of Chicago. On the south side of Chicago in the neighborhood of Lake Calumet, several PCB sources were identified. Other unidentified potential source location(s) will require additional upwind/downwind field sampling to verify modeling results. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据