4.8 Article

A low-starch barley mutant, Riso 16, lacking the cytosolic small subunit of ADP-glucose pyrophosphorylase, reveals the importance of the cytosolic isoform and the identity of the plastidial small subunit

期刊

PLANT PHYSIOLOGY
卷 131, 期 2, 页码 684-696

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.013094

关键词

-

向作者/读者索取更多资源

To provide information on the roles of the different forms of ADP-glucose pyrophosphorylase (AGPase) in barley (Hordeum vulgare) endosperm and the nature of the genes encoding their subunits, a mutant of barley, Riscircle divide 16, lacking cytosolic AGPase activity in the endosperm was identified. The mutation specifically abolishes the small subunit of the cytosolic AGPase and is attributable to a large deletion within the coding region of a previously characterized small subunit gene that we have called Hv.AGP.S.1. The plastidial AGPase activity in the mutant is unaffected. This shows that the cytosolic and plastidial small subunits of AGPase are encoded by separate genes. We purified the plastidial AGPase protein and, using amino acid sequence information, we identified the novel small subunit gene that encodes this protein. Studies of the Riso 16 mutant revealed the following. First, the reduced starch content of the mutant showed that a cytosolic AGPase is required to achieve the normal rate of starch synthesis. Second, the mutant makes both A- and B-type starch granules, showing that the cytosolic AGPase is not necessary for the synthesis of these two granule types. Third, analysis of the phylogenetic relationships between the various small subunit proteins both within and between species, suggest that the cytosolic AGPase single small subunit gene probably evolved from a leaf single small subunit gene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据