4.7 Article

Modeling the life cycle energy and environmental performance of amorphous silicon BIPV roofing in the US

期刊

RENEWABLE ENERGY
卷 28, 期 2, 页码 271-293

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0960-1481(02)00022-8

关键词

building integrated photovoltaics (BIPV); life cycle assessment; energy performance; air pollution prevention

向作者/读者索取更多资源

Building integrated photovoltaics (BIPV) perform traditional architectural functions of walls and roofs while also generating electricity. The displacement of utility generated electricity and conventional building materials can conserve fossil fuels and have environmental benefits. A life cycle inventory model is presented that characterizes the energy and environmental performance of BIPV systems relative to the conventional grid and displaced building materials. The model is applied to an amorphous silicon PV roofing shingle in different regions across the US. The electricity production efficiency (electricity output/total primary energy input excluding insolation) for a reference BIPV system (2kW(p) PV shingle system with a 6% conversion efficiency and 20 year life) ranged from 3.6 in Portland OR to 5.9 in Phoenix, AZ indicating a significant return on energy investment. The reference system had the greatest air pollution prevention benefits in cities with conventional electricity generation mixes dominated by coal and natural gas, not necessarily in cities where the insolation and displaced conventional electricity were greatest. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据