4.5 Article

Bone formation on two-dimensional (DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro

期刊

出版社

WILEY-LISS
DOI: 10.1002/jbm.a.10420

关键词

bone tissue engineering; scaffold; trabecular bone; cement line matrix; biomaterial interface

向作者/读者索取更多资源

For some bone tissue engineering strategies, direct contact of newly synthesized bone with a scaffold is important for structural continuity and stability at the scaffold/bone interface. Thus, as the polymer degrades, the support function of the scaffold could be adopted by the developing bone structure. This study was designed to determine whether poly(DL-lactide-co-glycolide) with a comonomer ratio of 75:25 supports bone apposition in vitro. Osteogenic cells derived from rat bone marrow cells were cultured for 2 weeks on polymeric two-dimensional films and three-dimensional tissue engineering scaffolds. Bacteriological grade polystyrene and tissue culture polystyrene dishes served as negative and positive controls for interfacial bone deposition, respectively. The surfaces of the prepared substrates were characterized by X-ray photoelectron spectroscopy, dynamic water contact angle, scanning electron microscopy, and atomic force microscopy. After cell culture, the elaborated matrix was examined using scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. The results show that poly(DL-lactide-co-glycolide) supports appositional bone growth on both two-dimensional films and three-dimensional scaffolds, including the formation of a mineralized cement line matrix. Furthermore, surface topographical features are not required for the adherence of the cement line matrix to the polymer. (C) 2002 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据