4.6 Article

Phosphorylation of the myosin phosphatase targeting subunit and CPI-17 during Ca2+ sensitization in rabbit smooth muscle

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 546, 期 3, 页码 879-889

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1113/jphysiol.2002.029306

关键词

-

资金

  1. NHLBI NIH HHS [HL70881, R01HL51824, R01 HL070881] Funding Source: Medline

向作者/读者索取更多资源

Myosin phosphatase (MLCP) plays a critical regulatory role in the Ca2+ sensitivity of myosin phosphorylation and smooth muscle contraction. It has been suggested that phosphorylation at Thr(695) of the MLCP regulatory subunit (MYPT1) and at Thr(38) of the MLCP inhibitor protein CPI- 17 results in inhibition of MLCP activity. We have previously demonstrated that CPI-17 Thr(38) phosphorylation plays an important role in G-protein-mediated inhibition of MLCP in tonic arterial smooth muscle. Here, we attempted to evaluate the function of MYPTI in phasic rabbit portal vein (PV) and vas deferens (VD) smooth muscles. Using site- and phospho-specific antibodies, phosphorylation of MYPT1 Thr(695) and CPI-17 Thr(38) was examined along with MYPT1 Thr(850), which is a non-inhibitory Rho-kinase site. We found that both CPI-17 Thr(38) and MYPT1 Thr(850) were phosphorylated in response to agonists or GTPgammaS concurrently with contraction and myosin phosphorylation in alpha-toxin-permeabilized PV tissues. In contrast, phosphorylation of MYPTI Thr(695) did not increase. Comparable results were also obtained in both permeabilized and intact VD. The Rho-kinase inhibitor Y-27632 and the protein kinase C (PKC) inhibitor GF109203X suppressed phosphorylation of MYPTI Thr(850) and CPI-17 Thr(38), respectively, in intact VD while MYPTI Thr(695). phosphorylation was insensitive to both inhibitors. These results indicate that phosphorylation of MYPT1 Thr(695) is independent of stimulation of G-proteins, Rho-kinase or PKC. In the phasic PV, phosphorylation of CPI-17 Thr(38) may contribute towards inhibition of MLCP while the phasic visceral VD, which has a low CPI- 17 concentration, probably utilizes other Ca2+ sensitizing mechanisms for inhibiting MLCP besides phosphorylation of MYPTI and CPI-17.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据