4.4 Article Proceedings Paper

H2O2-induced higher order chromatin degradation:: A novel mechanism of oxidative genotoxicity

期刊

JOURNAL OF BIOSCIENCES
卷 28, 期 1, 页码 57-60

出版社

INDIAN ACAD SCIENCES
DOI: 10.1007/BF02970132

关键词

neoplasia; neurodegeneration; oxidative stress; somatic mutations

类别

向作者/读者索取更多资源

The genotoxicity of reactive oxygen species (ROS) is well established. The underlying mechanism involves oxidation of DNA by ROS. However, we have recently shown that hydrogen peroxide (H2O2), the major mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant concentrations rapidly induces higher order chromatin degradation (HOCD), i.e. enzymatic excision of chromatin loops and their oligomers at matrix-attachment regions. The activation of endonuclease that catalyzes HOCD is a signalling event triggered specifically by H2O2. The activation is not mediated by an influx of calcium ions, but resting concentrations of intracellular calcium ions are required for the maintenance of the endonuclease in an active form. Although H2O2-induced HOCD can efficiently dismantle the genome leading to cell death, under sublethal oxidative stress conditions H2O2-induced HOCD may be the major source of somatic mutations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据