4.5 Article

Targeted disruption of the PDZK1 gene by homologous recombination

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 23, 期 4, 页码 1175-1180

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.23.4.1175-1180.2003

关键词

-

向作者/读者索取更多资源

Proteins containing PDZ domains are involved in a large number of biological functions, including protein scaffolding, organization of ion channels, and signal transduction. We recently identified a novel PDZ domain-containing protein, PDZK1, that is selectively expressed in normal tissues, where it is associated and colocalized with MAP17, a small 17-kDa membrane-associated protein; cMOAT, an organic anion transporter implicated In multidrug resistance; and the type IIa Na/Pi cotransporter. The protein cluster formed by PDZK1, MAP17, and cMOAT is upregulated in a significant number of human carcinomas originating in the colon, breast, lung, and kidney. In order to better define the function of PDZK1 in the protein cluster and its potential role in the organization of ion channels, we generated a PDZK1 knockout mouse. While PDZK1-deficient mice developed normally, did not display any gross phenotypic abnormalities, and were fecund, lack of PDZK1 resulted in modulation of expression of selective ion channels in the kidney, as well as increased serum cholesterol levels. However, no significant redistribution of proteins known to interact with PDZK1, such as MAP17, cMOAT, and the type IIa Na/Pi cotransporter, was observed. The absence of a more significant phenotype in PDZK1-deficient mice may be due to functional compensation by other PDZ domain-containing proteins, which could be Instrumental in determining the location of interacting proteins such as ion channels and other membrane-associated proteins in defined areas of the plasma membrane.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据