4.5 Article

Differential galanin receptor-1 and galanin expression by 5-HT neurons in dorsal raphe nucleus of rat and mouse: evidence for species-dependent modulation of serotonin transmission

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 17, 期 3, 页码 481-493

出版社

WILEY
DOI: 10.1046/j.1460-9568.2003.02471.x

关键词

5-HT1A autoreceptor; immunohistochemistry; in situ hybridization; median raphe; mRNA; neuropeptide; periaqueductal grey

向作者/读者索取更多资源

Galanin and galanin receptors are widely expressed by neurons in rat brain that either synthesize/release and/or are responsive to, classical transmitters such as gamma-aminobutyric acid, acetylcholine, noradrenaline, histamine, dopamine and serotonin (5-hydroxytryptamine, 5-HT). The dorsal raphe nucleus (DRN) contains approximate to 50% of the 5-HT neurons in the rat brain and a high percentage of these cells coexpress galanin and are responsive to exogenous galanin in vitro . However, the precise identity of the galanin receptor(s) present on these 5-HT neurons has not been previously established. Thus, the current study used a polyclonal antibody for the galanin receptor-1 (GalR1) to examine the possible expression of this receptor within the DRN of the rat and for comparative purposes also in the mouse. In the rat, intense GalR1-immunoreactivity (IR) was detected in a substantial population of 5-HT-immunoreactive neurons in the DRN, with prominent receptor immunostaining associated with soma and proximal dendrites. GalR1-IR was also observed in many cells within the adjacent median raphe nucleus. In mouse DRN, neurons exhibited similar levels and distribution of 5-HT-IR to that in the rat, but GalR1-IR was undetectable. Consistent with this, galanin and GalR1 mRNA were also undetectable in mouse DRN by in situ hybridization histochemistry, despite the detection of GalR1 mRNA (and GalR1-IR) in adjacent cells in the periaqueductal grey and other midbrain areas. 5-HT neuron activity in the DRN is primarily regulated via 5-HT1A autoreceptors, via inhibition of adenylate cyclase and activation of inward-rectifying K+ channels. Notably, the GalR1 receptor subtype signals via identical mechanisms and our findings establish that galanin modulates 5-HT neuron activity in the DRN of the rat via GalR1 (auto)receptors. However, these studies also identify important species differences in the relationship between midbrain galanin and 5-HT systems, which should prompt further investigations in relation to comparative human neurochemistry and which have implications for studies of animal models of relevant neurological conditions such as stress, anxiety and depression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据